• Yðïëïãéóìüò äéáôïìÞò êáé ðôþóçò ðßåóçò óå óùëÞíåò - åîßóùóç darcy-weisbach

    Ôï ìéêñü áõôü ðñïãñáììáôÜêé èá õðïëïãßóåé ãéá åóÜò ôçí ðôþóç ðßåóçò êáôÜ ìÞêïò åíüò óùëÞíá ÷ñçóéìïðïéþíôáò ôç äçìïöéëÞ åîßóùóç Darcy-Weisbach :
     hf = f * ( L / D) * (V2 / 2 * g). 

    Ãéá íá õðïëïãßóåôå ôçí äåõôåñåýïõóá ðôþóç ðßåóçò óôá åîáñôÞìáôá ðñïóèÝóôå ôéò áíôßóôïé÷åò ôéìÝò Km áðü ôïí ðßíáêá ðáñáêÜôù êáé åéóÜãåôå ôéò óôï áíôßóôïé÷ï ðåäßï (Km) ôïõ ðñïãñÜììáôïò.

    Ç ôéìÞ ôïõ óõíôåëåóôÞ ôñéâÞò f õðïëïãßæåôáé ìå ôçí åîßóùóç colebrook , êáé åëÝã÷åôáé ìå ôï äéÜãñáììá Moody.


    FittingKm
    Globe valve, fully open10.00
    Angle valve, fully open2.00
    Gate valve, fully open0.15
    Gate valve, 1/2 closed2.10
    Swing check valve , flow2.00
    Elbow 90o - flanged0.30
    Elbow 90o - threaded1.50
    Long radius 90°, flanged0.20
    Long radius 90°, threaded0.70
    Elbow 45°, threaded0.40
    Tee , Line flow, flanged0.20
    Tee , Line flow, threaded0.90
    Tee , Branch flow, flanged1.00
    Tee , Branch flow, threaded2.00
    Piping Entry & Exit1.00
    This Little program will calculate for you the friction loss through a pipe using the popular Darcy-Weisbach equation :
     hf = f * ( L / D) * (V2 / 2 * g). 

    In order to calculate the minor losses (fittings) you must add the corresponding Km values from the table below , and enter them in the Km textbox  of applet.

    The value of  friction factor f is calculated using the colebrook equation , and can be checked using the Moody diagram.

    The Java plug-in for web browsers relies on the cross platform plugin architecture NPAPI, which has been supported by all major web browsers for over a decade. Google's Chrome version 45 (scheduled for release in September 2015) drops support for NPAPI, impacting plugins for Silverlight, Java, Facebook Video and other similar NPAPI based plugins Oracle recommends using Internet Explorer (Windows) or Safari (Mac OS X) or you can use firefox instead.

  • ÈÝñìáíóç - êëéìáôéóìüò



    Çëåêôñïíéêü êáôÜóôçìá åéäþí èÝñìáíóçò êáé êëéìáôéóìïý